When it comes to scalability, Polkadot is one of the leading blockchain platforms. So why did Integritee feel the need to develop a second-layer sidechain protocol for Polkadot? In this post, we will take a look at the origin of sidechains and why they are needed on Polkadot. Then, we will describe how Integritee has created a second-layer protocol that can deliver sub-second block times, with 1,000 transactions per second (TPS) per sidechain, and up to 1 million TPS over the entire Integritee network.
Traditional proof-of-work (PoW) blockchains rely on a combined hash rate to ensure their security. In principle, the more miners there are and the more computer hardware devoted to mining, the harder the network is to breach, as an intruder typically needs to control 51% of the overall computational power to gain control.
However, the need for mining also leads to scalability issues, where a heavy transaction load can create bottlenecks. Bitcoin, for instance, processes an average of 3-7 transactions per second, whereas traditional payment processors like VISA average 1,700.
Sidechains emerged in response to this challenge. A sidechain is a second blockchain that processes transactions separately and connects at set intervals to the mainchain to update its verified state. By reducing the number of transactions that need to be verified on the mainchain, sidechains enable greater scalability and faster transaction times.
Typically both the parent blockchain and sidechain contain lock boxes connected by a two-way peg. In order to use the sidechain, a user needs to lock assets on the mainchain by sending them to a designated lockbox address. A corresponding amount of assets then become available on the sidechain. Once on the sidechain, assets can be transacted at greater speed. That’s how it works on Liquid Network, for example, a Bitcoin-based sidechain that reduces the block time to one minute and enables 7-10 TPS.
Other than increased scalability, another potential benefit of sidechains is that they can be used to provide a higher degree of transaction privacy, as not every transaction needs to be disclosed on the mainchain. A key disadvantage, however, is that the security of a sidechain is totally separate from the mainchain, and may be weaker if the sidechain network is smaller and lacks access to a large and diverse pool of validators.
Polkadot has significant advantages when it comes to scalability. Firstly, it uses a form of nominated proof of stake (NPoS) to achieve consensus. This makes the total volume of staked assets — rather than the total hashing power of the network — the most relevant metric for determining the core security of the network. With mining not taking up computing resources, validation is faster.
In addition, Polkadot adopts a pooled security model, whereby many separate blockchains called parachains can connect to a common relay chain and share security resources. This architecture enables it to achieve about 166-1000 TPS in current real-world operations and makes it one of the most energy-efficient blockchain protocols, according to research by the Crypto Carbon Ratings Institute.
Given that Polkadot performs comparatively well on scalability, why did Integritee develop sidechains? The first reason is privacy. While Polkadot offers competitive transaction speeds, as a public blockchain, it is transparent by nature. Transparency is an oft-cited advantage of blockchain but in some cases, it can be problematic. A user may wish to access a service that requires identity verification without publicly disclosing any personal information, for instance. A cryptocurrency trader may wish to execute a large trade on an exchange without the threat that so-called frontrunners will gain prior knowledge of the move by monitoring the mempool of unconfirmed transactions. So there is a need for confidential processing of certain data — such as the user’s personal information or the trader’s order.
The second motivation for sidechains is performance. While Polkadot comes out well in comparative tests with other blockchains, sometimes quite fast is not fast enough. Take the rapidly growing blockchain gaming space. During a fast-paced game, there could be multiple events within a space of seconds that would affect the value or ownership status of in-game assets, and any lags in responsiveness caused by latency issues will diminish the gameplay experience. This is why the decentralized blockchain gaming platform Ajuna chose to use Integritee sidechains to maximize performance and reduce latency to 300ms. And this is just one example — from high-frequency digital asset trading to connectivity with industrial IoT devices, there are many other scenarios that involve a similarly high transaction throughput.
One of the first big breakthroughs we made at Integritee was to establish a framework whereby Substrate-based blockchains like Polkadot and Kusama could harness trusted execution environments (TEEs) to process data confidentially. (For an explanation of how we use TEEs, read our previous article on the topic.)
At first, this was not a sidechain solution per se. Users could simply send data to a trusted function on a TEE and receive an on-chain response. Initially, every TEE transaction needed to first pass through the main blockchain to determine the order in which transactions would be processed, which limited the scalability of the solution.
To make Integritee even faster and more scalable, therefore, we developed sidechains that support multiple validators operating within TEEs. A unique advantage of Integritee sidechains is that because every validator operates within a TEE, all validators can trust each other, which means that consensus can be reached with a much faster and simpler protocol. As a result, Integritee can deliver sub-second block times with 1,000 TPS on each sidechain. In combination, this provides a cumulative capacity of up to 1 million TPS over the entire Integritee Network for well-shardable use cases.
The Polkadot platform offers highly competitive scalability balanced with security and flexibility. However, some use cases require transaction privacy, high transaction throughput, or low latency. Integritee sidechains are ideally suited to processing sensitive data at scale, or for any blockchain use case that requires ultra-fast response times.
Bear With Us: Blockchain Technology is Still Relevant, Even when Crypto Declines
Series 2 – The Integritee Network | Episode 4 – Integritee Sidechains
The Imperative for Privacy in Blockchain: TEEs & Privacy-Preserving Software
Series 2 – The Integritee Network | Episode 3 – Integritee Technology
Monthly Wrap-Up October 2023: Joining an Accelerator Program, Launching the New Website, Educational Content & More!
Series 2 – The Integritee Network | Episode 2 – Integritee Architecture & Components
How Blockchain is Benefiting Numerous Industries: From Sustainability to Brand Quality Control
KYC in Web3: How DiD is Saving the Day for Projects & Companies
Series 2 – The Integritee Network | Episode 1 – Introducing Integritee
Monthly Wrap-Up September 2023: Winning an Award, Talking at Sub0, Partnering with OVH & More!
Series 1 – All you need to know about TEEs | Episode 6 – TEE Limitations
OVH Releases Whitepaper on How Integritee Is Re-Inventing Blockchain Security & Confidentiality Using Intel SGX Technology & OVHcloud
Series 1 – All you need to know about TEEs | Episode 5 – TEE Principles & Threat Models
Monthly Wrap-Up August 2023: Launching the Attesteer, Encointer’s PoP Badge & More
Series 1 – All you need to know about TEEs | Episode 4 – TEE Application Development
Launching Integritee’s Attesteer
Series 1 – All you need to know about TEEs | Episode 3 – TEE Technologies
DAOs: How Fair can Decision-Making be and Why is Private Voting Essential?
Monthly Wrap-Up July 2023: Video Releases, Tech Updates & More
Series 1 – All you need to know about TEEs | Episode 2 – TEE Use Cases
Monthly Wrap-Up June 2023: Polkadot Decoded, New Add-Ons and More
Integritee’s Teeracle Available on the Securitee Platform as an Add-On
Monthly Wrap-Up May 2023: Governance Platform Launch, New Environments and More
Integritee Launches New Governance Platform with Polkassembly
Monthly Wrap-Up April 2023: Tech Upgrades, Partnerships & Upcoming News
Monthly Wrap-Up March 2023: Product Releases, a Privacy Sidechain & More
Securitee & enclaive Team Up to Offer Ready-To-Use TEE-Secured Solutions
Securitee Launches Confidential Computing Platform to Protect Data in Use
Introducing Integritee’s Teeracle: A Framework to Build TEE-Based Oracles
A Privacy Sidechain for All Polkadot & Kusama Chains
Monthly Wrap-Up February 2023: Launching Roadmap, Partnerships and More!
SDK v0.11.0: Increased Performance and Faster Processes
OLI Systems Develops Innovative Energy Market Place by Building on Integritee
Integritee Network: Roadmap 2023
Monthly Wrap-Up January 2023: Slot Swap, Davos Touchdown and Much More
Community Updates: Discord, Twitter Raids & More
2022 at Integritee: Winning Parachains, Hosting Events, Integrating with Projects & Much More
Monthly Wrap-Up November 2022: Lisbon Happenings, Bifrost Integration & More
XCM Integration of Integritee and Bifrost Completed
Integritee Welcomes Sergei Medvedev as New Advisory Board Member
Monthly Wrap-Up October 2022: Travels, Interviews, Tech Updates & More
Monthly Wrap-Up September 2022: Integritee SDK Release, Token2049 & More
Integritee & Securitee: Connecting the Dots
Integritee’s SDK: A New Era of Web3 Application Building
Monthly Wrap-Up August 2022
Integritee Sidechain Performance Benchmark
Integritee & Crust Team Up for Publicly Verifiable Decentralized Content Storage
Integritee’s Polkadot Crowdloan
Monthly Wrap-Up July 2022: Winning a Slot on Polkadot, Integrating with Karura & Much More
From Web 2.0 to Web3: A Step Forward
Polkadot: The Next Step in Integritee’s Growth and Development
Integritee Rewards Structure: Early Birds, Loyal Followers, Family, Friends, and More!
The Integritee Polkadot Crowdloan Campaign Starts Today!
XCM Integration: What Is It and How Does It Work?
Monthly Wrap-Up June 2022: Kraken listing, Talking at Polkadot Decoded & More!
XCM integration of Integritee & Moonriver Completed
Here’s What You Need to Know About XCM Integration on Polkadot
Integritee Completes 2 Key Milestones Towards Decentralization
Monthly Wrap-Up May 2022: Decentralization, International Events, Virtual Worlds & Much More
The Complete Guide to TEER Tokens
How Integritee combines the benefits of Web2 and Web3 technologies
Monthly Wrap-Up April 2022: Networking, Technical Updates and Business Growth
Monthly Wrap-Up March 2022: Migrating to Kusama & Building Our Community
Update On Integritee Parachain Migration
What Should Integritee Present at Polkadot Decoded 2022? You Decide.
TEE Time with Integritee
A Healthier Approach to Wearables
Event Series: Learn How Integritee Is Taking Gaming to the Next Level With Ajuna
Monthly Wrap-Up February 2022: A New Listing, Sidechains & Other Updates
TEE 101: How Intel SGX works and why we use it at Integritee
After the Crowdloan: What’s Happening Next
Integritee Achieves Feature-Complete Sidechains
Enterprise-Focused Securitee Expands Integritee’s Ecosystem
Kusama Parachain Bid – And the Slot Goes to Integritee!
Integritee Year in Review 2021: Milestones Reached, Partnerships Forged
Integritee Launches its First Web3 Oracle
Introducing the Integritee Ambassador Program
The Integritee Mainnet is Live!
All Systems Go: Mainnet, Token Sale and TEER Giveaway!
How Decentralized Networks Can Cure the Privacy Pandemic
Integritee and Fractal Team Up for Fair Data Exchange
Integritee to Collaborate with KILT Protocol for SocialKYC Authentication
Integritee Partners with Decentralized Gaming Platform Ajuna
Confidential Computing Will Secure Our Secrets in Web3
The How, Why and What of the Kusama Crowdlending